
Massive-scale RDF Processing UsingCompressed 
Bitmap Indexes

Kamesh Madduri and John Wu
Scientific Data Management

Lawrence Berkeley National Laboratory

SSDBM 2011



• •Introduction to RDF and SPARQL queries
• •Bitmap Index Construction for RDF data
• •Query evaluation scheme using compressed bitmap indexes
• •Performance results

Talk Outline



• •The RDF (Resource Description Framework) data model is a 
popular abstraction for linked data repositories 
o –Records are in triple form [<subject> <predicate> <object>]
o –Data sets with a few billion triples 
 quite common 

• •Emergence of “triple-stores”, custom databases for storage and 
retrieval of RDF data
o –Jena, Virtuoso, Sesame

Semantic Data Analysis and RDF



• •Query language expressing conjunctions and disjunctions of triple 
patterns

• •Each conjunction corresponds to a join
• •SPARQL queries can be viewed as graph pattern-matching
• •Example query from the Lehigh University Benchmark Suite 

(LUBM):
o –select ?x ?y ?z where {
 ?x rdf:type ub:GraduateStudent . 
 ?y rdf:type ub:University .
 ?z rdf:type ub:Department . 
 ?x ub:memberOf ?z .
 ?z ub:subOrganizationOf ?y . 
 ?x ub:undergraduateDegreeFrom ?y .
 }

SPARQL



• •We use the compressed bitmap indexing software FastBit to 
index RDF data
o –Several different types of bitmap indexes
o –Fast parallel index construction

• •We present a new SPARQL query evaluation approach
o –Pattern-matching queries on RDF data are modified to use bitmap 

indexes

• •Our approach is up to an order of magnitude faster than the 
RDF-3X SPARQL query software
o –Speedup insight: The nested joins in SPARQL queries can be expressed 

as fast and I/O optimal bit vector operations

FastBit-RDF: Our Contributions



• •RDF data is commonly expressed as triples
o –(subject, predicate, object)

• •We create and maintain two string to integer dictionaries
o –Predicate strings to integer IDs (PDict)
o –A combined subject and object dictionary (SODict)

• •We construct three Column Indexes, one for each column
o –Keys are distinct values, bit vectors are the size of the number of records, 

and a bit is set if the value appears in a particular record
o –Analogous to traditional bitmap indexes

• • We construct three Composite Indexes
o –Keys are composite values of subject-object, predicate-subject, and 

predicate-object
o –Each composite key has a bit vector associated with it

Bitmap Index Construction: Data structures



S P O

0 0 0

0 1 1

0 2 2

0 3 3

4 0 5

4 1 6

4 2 7

4 3 3

Column Index Data Structures: Illustration
Triple data

nSO = 8
nP = 4

Subject 
Column Index

Two keys: 0, 4

Key 0

1 0 0 0 0

Key 4

0 1 1 1 1

Object index (8 bit vectors) and predicate index (4 
bit vectors) can be similarly constructed.



Composite Index: Illustration

S P O

0 0 0

0 1 1

0 2 2

0 3 3

4 0 5

4 1 6

4 2 7

4 3 3

nSO = 8
nP = 4

Triple data
PSIndex

Eight composite keys

(0,0) 1 0 0 0

(1,0) 0 0 0 0

(2,0) 0 1 0 0

(3,0) 0 0 0 0

(0,4) 0 0 0 1

(1,4) 0 0 0 0

(2,4) 0 0 0 0

(3,4) 0 0 0 0

Note: Bit vectors are further compressed with FastBit.



Answering a SPARQL Query with Bitmap Indexes

Query in SPARQL
Select ?p where {

1. (a)?p <type> ‘scientist’ .
(b) ?city1 <locatedIn> ‘USA’ .
(c) ?city2 <locatedIn> ‘China’ .
(d) ?p <bornInLocation> ?city1 .
(e) ?adv <bornInLocation> ?city2 .
(f) ?p <hasDoctoralAdvisor> ?adv .

Query Graph

Example Search Query: list of all scientists born in a city in USA, who 
have/had a doctoral advisor born in Chinese city. 

join

Composite
Index lookup

The ordering of bit vector operations determines query work performed.



Data Set #triples LUBM
1M

LUBM
50M

Yago
40M

UniProt
220M

Raw data (GB) 0.125 6.27 3.56 30.58

FastBit dictionaries 
(GB)

0.032 0.79 1.30 3.05

FastBit Indexes (GB)0.016 1.59 1.20 6.30

RDF-3X (GB) 0.058 2.83 2.75 ---

Index Size Comparison

• FastBit indexes 1.78-3.6X smaller than RDF-3X B-tree 
based index for various data sets.

• FastBit indexes are much smaller than the raw data.



LUBM/50M records SPARQL test query evaluation time in milliseconds, ‘warm 
caches’ performance on a 2.67 GHz Intel Xeon system.

Performance Results: LUBM Benchmark

Q1 Q2 Q3 Q4 Q5 Q6 Q7

FastBit 0.167 1311 0.92 0.40 0.19 135 0.46

RDF-3X 0.31 544 0.193 0.70 1.95 4021 1.52

Speedup 1.86X .42X 0.21X 1.75X 10.3X 29.8X 3.3X

Q8 Q9 Q10 Q11 Q12 Q13 Q14

FastBit 6.34 9288 0.179 0.148 2.34 0.34 467

RDF-3X 50.4 1369 0.336 0.35 7.44 1.7 13770

Speedup 7.95X .15X 1.87X 2.36X 3.17X 5.0X 29.5X

 select ?x ?y ?z where {
 ?x ub:subOrganizationOf <http://www.University0.edu> .
 ?x rdf:type ub:Department .
 ?x ub:memberOf ?y .
 ?x rdf:type ub:UndergraduateStudent .
 ?x ub:emailAddress ?z .
 }

 select ?x where {
 ?x rdf:type ub:UndergraduateStudent .
 }



FastBit query evaluation performance improvement achieved 
(geometric mean of individual query speedup) over RDF-3X for 
various data sets.

Performance Results: Summary

LUBM-5M LUBM-50M LUBM-500M Yago-40M

Speedup 12.96X 2.62X 2.81X 1.38X



• •We utilize compressed bitmap indexes to accelerate RDF 
SPARQL queries

• •Our new approach is 1.4-13X faster than RDF-3X, a state-of-
the-art RDF storage and retrieval system.

Future Work
• •Develop join indexes for SPARQL queries
• •Automate SPARQL query parsing and evaluation
• •Speed up index and dictionary creation
• •Support incremental index updates

Conclusions



Thank you!

Questions?
Information about FastBit
http://sdm.lbl.gov/fastbit/


