Speculating on Scientific Collaboration Futures

Bill Howe

http://escience.washington.edu

escience institute

Search

About 502,000 results (0.15 seconds)

Go to Google.com Advanced search

Did you mean: e science institute

escience institute

Were you looking for: science institute

Institute of Noetic Sciences: Home Page

IONS is a nonprofit membership organization that conducts and sponsors leading-edge research into the potentials and powers of consciousness: including perceptions, beliefs ...

www.noetic.org · Cached page

escience institute

About 503,000 results (0.20 seconds)

Everything

Videos

News

Shopping

▼ More

Northeast Ithaca

Change location

All results

Wonder wheel

More search tools

► eScience Institute Q

Summer Workshop: Intro to Parallel Programming & Cluster Computing FREE, hosted by eScience Institute. Jun 26, 2011 (All day). Every summer, the National ... escience.washington.edu/ - Cached - Similar

Writing an NSF Data Management Plan | eScience Institute 🔍

Dec 12, 2010 ... The eScience Institute offers the following resources to ... escience.washington.edu/blog/writing-nsf-data-management-plan - Cached

■ Show more results from washington.edu

Association of Research Libraries :: ARL/DLF E-Science Institute Q

The ARL/DLF E-Science Institute will be a set of designed learning experiences that take small teams of individuals chosen by research libraries though a ... www.arl.org > ... > evolving e-research > e-science - Cached

Association of Research Libraries :: E-Science Q

Mar 28, 2011 ... ARL/DLF E-Science Institute Update Webinar for Sponsors ... www.arl.org > ... > evolving e-research - Cached - Similar

Show more results from arl.org

Home | e-Science Institute Q

e-Science Institute, 15 South College St, Edinburgh EH8 9AA tel: 0131 650 9833 Fax: 0131 650 9819 Email: adminteam@nesc.ac.uk.

www.esi.ac.uk/ - Cached - Similar

escience institute

About 502,000 results (0.15 seconds)

Got

Everything

- Images
- Videos
- News
- Shopping
- ▼ More

Edinburgh, UK

Change location

The web

Pages from the UK

All results

Wonder wheel

More search tools

► Home | e-Science Institute Q

e-Science Institute, 15 South College St, Edinburgh EH8 9AA tel: 0131 650 9833 Fax: 0131 650 9819 Email: adminteam@nesc.ac.uk.

www.esi.ac.uk/ - Cached - Similar

Trust and Security in Virtual Communities | e-Science Institute

e-Science Institute, 15 South College St, Edinburgh EH8 9AA tel: 0131 650 ... www.esi.ac.uk/research-themes/8 - Cached

ESIWiki 9

Welcome to the e-Science Institute Wiki. On this site you will find links to ... wiki.esi.ac.uk/ - Cached - Similar

Show more results from esi.ac.uk

National e-Science Centre Q

6 Jun 2011 ... e-Science Hub Kelvin Building Glasgow G12 8QQ United Kingdom Tel: 0141 330 8606. Fax: 0141 330 4913 email, e-Science Institute ... www.nesc.ac.uk/ - Cached - Similar

eScience Institute Q

Summer Workshop: Intro to Parallel Programming & Cluster Computing FREE, hosted by eScience Institute. Jun 26, 2011 (All day). Every summer, the National ... escience.washington.edu/ - Cached - Similar

The University of Washington eScience Institute

Rationale

- The exponential increase in physical and virtual sensing tech is transitioning all fields of science and engineering from data-poor to data-rich
- Techniques and technologies include
 - Sensors and sensor networks, data management, data mining, machine learning, visualization, cluster/cloud computing
- If these techniques and technologies are not widely available and widely practiced, UW will cease to be competitive

Mission

 Help position the University of Washington and partners at the forefront of research both in modern eScience techniques and technologies, and in the fields that depend upon them.

Strategy

- Bootstrap a cadre of Research Scientists
- Add faculty in key fields
- Build out a "consultancy" of students and non-research staff

Funding

- \$1M/year direct appropriation from WA State Legislature
- augmented with soft money from NSF, DOE, Gordon and Betty Moore Foundation

**Bill Howe, Phd (databases, visualization, data-intensive scalable computing, cloud)

Staff

- •**Garret Cole (cloud computing (Azure, EC2), databases, web services)
- Keith Grochow (visualization, earth science, graphics, cloud computing)
- Marianne Shaw, Phd (health informatics, semantic web, RDF, graph databases)
- Alicia Key (visualization, user-centered design, web applications)

Students

- •Leilani Battle (undergrad), databases, performance evaluation
- Yuan Zhou (masters, Applied Math), machine learning, ranking, recommender systems

Partners

- •**UW Learning and Scholarly Technologies (web applications, QA/support, release mgmt)
- •**Cecilia Aragon, Phd, Associate Professor, HCDE (visualization, scientific applications)
- Magda Balazinska, Phd, Assistant Professor, CSE (databases, cloud, DISC)
 - YongChul Kwon Phd, databases, DISC, scientific applications (advisor: Balazinska)
 - Nodira Khoussainova, databases, machine learning (advisors: Balazinska, Suciu)
- Dan Suciu, Phd, Professor, CSE, (probabilistic databases, theory, languages)
 - Paraschos Koutris, theory, distributed computing

What will scientific collaborations look like in 20 years?

Selected Characteristics of "The Computer"

- It's never the bottleneck
 - No one ever swears at it
- How?
- All data addressable
- All operations composable
 - "Computer, apply X to Y"
- Zero latency
- Fancy Interfaces
 - Declarative interfaces for input (voice, NLP)
 - Intuitive visual interfaces for output

All data addressable

- One logical namespace
- Explicit data movement is never required
- Implicit data movement optimized appropriately

All operations composable

- Logical compatibility implies physical compatibility
 - No explicit typecasting file format conversions
- No distinction between "inside the DB" vs. "outside the DB"
 - "in situ" data [SciDB]
 - amortizing load cost [Ailamaki, Kersten]
- Incremental structuralization/schemafication
 - Extract Tables, Graphs, Trees, Arrays from files, incrementally
 - "Recognizers" to perform the information extraction
 - Pig (Yahoo), SCOPE (MS), [Ailamaki 2010]
- "Soft Schemas"
 - "Guess" the type, explore the consequences

Aside: There will always be data born "in the wild"

- No schema, certainly no ontology, weird format, shitty metadata
- There is no difference between debugging and formal experiments.
 - When it works, it's an experiment.
 - When it doesn't, it's debugging.
- "Free" trial and error is a beautiful property of computational science
 - Be conservative about limiting this freedom
- Need to embrace the chaos, not legislate it away

Zero latency

- "Semantic pre-fetching"
 - Choose an "important" and compatible pair (f, X)
 - Pre-generate f(X)
 - Solicit review from users
 - Incorporate feedback
 - "hypothesis generation"

What breakthroughs are required?

- All data addressable
 - Universal uptake of cloud computing; significant price reduction**
- All operations composable
 - Soft schemas; in situ data; incremental structuralization
- Zero latency
 - Speculative, proactive execution

** All data import is now free; all new users get a free micro instance for a year; compute costs have dropped 80%; storage costs have dropped 50%

Relevant Technologies

Where we are

Where we're headed

- 1000s of sources
- unknown structure
- unknown semantics
- unknown quality
- unknown relationships

The only query that matters: "show me what's important"

Automatically suggest

- schemas
- queries
- visualizations
- predictive models

Reduce application design to a series of simple decisions

Takeaways

- All code and all data will be born, live, and die in the cloud
 - accessed through your tablet, phone, iDevice
 - requires: nothing; it's already happening
- Query and reason about the "derivation space"
 - i.e., everything that the system can potentially create
 - requires: in situ data; soft schemas; incremental structuralization
- Speculative, eager, proactive, automatic data mining
 - results presented to researchers for review and feedback
 - "Highlight reel" for unfamiliar data (trends and anomalies)
 - requires: surplus computing resources; models of what's important

The future is already here; it's just not very evenly distributed

-- William Gibson

PrePredict

- Same idea, but with machine learning
- Eagerly and proactively apply predictive algorithms to data in the database
- Emit results for review by humans
 - daily, weekly, whatever
- Learn from feedback
- incorporate explicit user interests
 - expressed as queries, hints, etc.
 - Many of the same signals search engines use, but applied to a search space with elements that don't yet exist

Putting it together: Exploratory Analysis

- The only query is "What's important here?"
- A narration of your data
- How?
 - Identify trends and anomalies
 - Generate candidate models, visualizations, queries
 - Show the best ones for review
 - [Pandora, Tivo, Netflix]

All code/data in the same logical space

What technologies do we need?

- Data "born" into the cloud
 - It never moves
 - Bring the computation to the data
- A rich and evolving suite of native services for manipulating the data available
 - MapReduce
 - SQL
 - etc.
- Virtual machines for new and custom operations
 - with some special support for parallelism